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Abstract 

In digital human modelling (DHM) systems consideration of anthropometry is central. Important functionality in 
DHM tools is the regression model, i.e. the possibility to predict a complete set of measurements based on a 
number of defined independent anthropometric variables. The accuracy of a regression model is measured by 
how well the model predicts dependent variables based on independent variables, i.e. known key anthropometric 
measurements. In literature, existing regression models often use stature and/or body weight as independent 
variables in so-called flat regressions models which can produce estimations with large errors when there are low 
correlations between the independent and dependent variables. This paper suggests a conditional regression 
model that utilise all known measurements as independent variables when predicting each unknown dependent 
variable. The conditional regression model is compared to a flat regression model, using stature and weight as 
independent variables, and a hierarchical regression model that uses geometric and statistical relationships 
between body measurements to create specific linear regression equations in a hierarchical structure. The 
accuracy of the models is assessed by evaluating the coefficient of determination, R2 and the root-mean-square 
deviation (RMSD). The results from the study show that using a conditional regression model that makes use of 
all known variables to predict the values of unknown measurements is advantageous compared to the flat and 
hierarchical regression models. Both the conditional linear regression model and the hierarchical regression 
model have the advantage that when more measurements are included the models will give a better prediction of 
the unknown measurements compared to the flat regression model based on stature and weight. A conditional 
linear regression model has the additional advantage that any measurement can be used as independent variable. 
This gives the possibility to only include measurements that have a direct connection to the design dimensions 
being sought. Utilising the conditional regression model would create digital manikins with enhanced accuracy 
that would produce more realistic and accurate simulations and evaluations when using DHM tools for the 
design of products and workplaces. 
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1. Introduction 

Digital human modelling (DHM) tools are used to 
reduce the need for physical tests and to facilitate 
proactive consideration of ergonomics in virtual 
product and production development processes 
(Chaffin et al. 2001; Duffy 2009). DHM tools 
provide and facilitate rapid simulations, 
visualisations and analyses in the design process 
when seeking feasible solutions on how the design 
can meet set ergonomics requirements. DHM 
software includes a digital human model, also 
called a manikin, i.e. a changeable digital version of 
a human. An important part of DHM systems is 
anthropometry, the study of human measurements, 

and the functionality of creating human models 
based on a few predictive anthropometric 
measurements. The known predictive 
measurements, seen as independent variables, are 
used in a regression model to calculate a complete 
set of anthropometric measurements which are used 
to create digital human models that facilitates 
accurate ergonomics simulation and analyses. The 
number of independent key variables varies from 
case to case and should be chosen based on 
relevance to the design problem (Dainoff et al. 
2004). Regression models can be seen as black 
boxes that use input, i.e. known key anthropometric 
measurements, to produce output, i.e. a complete 
set of anthropometric measurements (Figure 1). 
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Figure 1 The regression model seen as a black box that 
uses input to produce output 

The accuracy of a regression model should 
therefore be measured by how good the model 
predicts the unknown measurements, i.e. dependent 
variables, based on the known key anthropometric 
measurements, i.e. independent variables. In 
literature, concerning anthropometry, existing 
regression models often use stature and/or body 
weight as independent variables in linear regression 
equations (Drillis et al. 1966; Pheasant 1982; 
Gannon et al. 1998; Peacock et al. 2012). However, 
these so-called flat regressions models can make 
estimations with large errors when there are low 
correlations between the independent and 
dependent variables (You and Ryu 2005). To 
reduce this problem You and Ryu (2005) presented 
a hierarchical regression model that uses geometric 
and statistical relationships between body 
measurements to create specific linear regression 
equations in a hierarchical structure. Using a 
hierarchical regression model gives better estimates 
of predicted measurements if more measurements 
are known and used as input. Still, the hierarchical 
system requires measurements higher up in the 
hierarchy, i.e. stature and body weight, to be 
included in the analyses even if they do not 
necessarily have a direct connection to the design 
dimensions being sought (Bertilsson et al. 2011).  
 
Using a conditional linear regression model that 
uses all known measurements to predict all 
unknown measurements would give better 
predictions and at the same time give the possibility 
to choose more freely which anthropometric 
measurements that should be used as input. It is 
possible to calculate the regression coefficients for 
a linear regression model through analysis of the 
correlation or covariance between known and 
unknown measurements (Johnson and Wichern 
1992). This paper presents a conditional linear 
regression model and compares its predicted results 
with the results of a flat regression model based on 
stature and weight and a hierarchical regression 
model based on the method presented by You and 
Ryu (2005). 

2. Materials and Methods 

The conditional linear regression model analyses 
the covariance between the independent and 
dependent variables to calculate the regression 
coefficients. Based on the regression coefficients 
and the mean values, for both the independent and 
dependent variables, linear regression equations can 

be constructed for each dependent variable. This 
multivariate statistical analysis is based on the 
assumption that anthropometric measurements can 
be approximated with a normal distribution, which 
holds true in most cases (Pheasant and Haslegrave 
2006). However, the conditional linear regression 
model predicts the dependent variables with the 
smallest mean square error even if the normality 
assumption is not valid (Johnson and Wichern 
1992). The statistical and mathematical analysis 
was done using MATLAB (MathWorks 2010) and 
ANSUR (Gordon et al. 1989) anthropometric data 
with measurements from 1774 males and 2208 
females. 

2.1. Mathematical procedure of the conditional 
regression model 

A multivariate regression model uses k number of 
independent variables 𝐙 = [𝑍1,𝑍2, … ,𝑍𝑘]𝑇  for the 
prediction of j number of dependent variables 
𝐘 = �𝑌1,𝑌2, … ,𝑌𝑗�

𝑇
 as 
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When combining Y and Z the regression model 
gives a complete set of anthropometric 
measurements 𝐗 = �𝑋1,𝑋2, … ,𝑋𝑗+𝑘�

𝑇
 which is later 

used to describe joint centre positions and link 
lengths of a biomechanical model. 
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The conditional expectation of Y, given the fixed 
values Z of the independent variables, is 
 

𝐸[𝐘|𝑍1,𝑍2, … ,𝑍𝑘] = 𝜷𝒐 + 𝜷𝒛 
= 𝝁𝒀 + 𝚺𝒀𝒁𝚺𝒁𝒁−1(𝒛 − 𝝁𝒛) 

 
This conditional expected value, considered as a 
function of Z is called the multivariate regression 
of the vector Y on Z. It is composed of j univariate 
regressions. The j×k matrix 
 

𝜷 = 𝚺𝒀𝒁𝚺𝒁𝒁−1 

Regression 
model 

Input: 
Known key 

anthropometric 
measurements 

Output: 
Complete set of 
anthropometric 
measurements 
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is called the matrix of regression coefficients and 
the j×1 vector  
 

𝜷𝒐 = 𝝁𝒀 − 𝚺𝒀𝒁𝚺𝒁𝒁−1𝝁𝒛 
 
is the vector containing the intersection point for 
each regression equation. 

2.2. Description of comparison procedure 

The described conditional regression model was 
compared to a flat regression model based on 
stature and weight and a hierarchical regression 
model based on the method presented by You and 
Ryu (2005). In the analyses gender was treated 
separately by creating specific regression equations 
for each gender for the flat and hierarchical 
regression models and letting the conditional 
regression model analyse both female and male 
data. 56 anthropometric measurements (Table 1) 
were included in the analysis and four comparative 
tests were done where the number of independent 
variables varied for each test. The first test was 
done with stature and weight as independent 
variables which are the measurements that are 
necessary in the flat and hierarchical regression 
models. The second and third test was done using 
the first 7 and 17 measurements respectively 
according to Table 1. These measurements were 
chosen as they could be found high up in the 
hierarchal model described by You and Ryu (2005). 
The last and final test was done using the last three 
measurements in Table 1, hip breadth (sitting), 
popliteal height and radiale-stylion length. These 
measurements are found further down in the 
hierarchy of the hierarchical model, but could still 
be interesting to use, for example in the design of 
an office chair. The last test was not possible to 
perform with the flat and hierarchical model, since 
these models require stature and weight as 
independent variables, but was useful to show the 
capability of the conditional regression model. The 
three regression models were compared by 
assessing the coefficient of determination, R2, as 
 

𝑅2 =
∑ (𝑦�𝑗 − 𝑦�)2𝑛
𝑗=1

∑ (𝑦𝑗 − 𝑦�)2𝑛
𝑗=1

 

 
and the root-mean-square deviation (RMSD) as  
 

𝑅𝑀𝑆𝐷 = �
∑ (𝑦𝑗 − 𝑦�𝑗)2𝑛
𝑗=1

𝑛
 

 
where 𝑦𝑗 is the measured value, 𝑦� the mean value, 
𝑦�𝑗 the predicted value and 𝑛 the number of 
measured individuals (1774 males and 2208 
females). 
 

Table 1 The 56 anthropometric measurements included 
in the evaluation of regression models 

# Anthropometric measurement 
1 Stature 
2 Weight 
3 Acromial height 
4 Knee height at midpatella 
5 Trochanterion height 
6 Thumb-tip reach 
7 Waist circumference at omphalion 
8 Buttock circumference 
9 Chest circumference 
10 Elbow circumference 
11 Forearm-hand length 
12 Functional leg length 
13 Hand circumference at metacarpale 
14 Hand length 
15 Head circumference 
16 Thigh circumference, proximal 
17 Wrist circumference, stylion 
18 Ankle circumference 
19 Axilla height 
20 Arm circumference at axillar 
21 Foot circumference 
22 Biacromial breadth 
23 Bideltoid breadth 
24 Buttock depth 
25 Buttock-knee length 
26 Buttock-popliteal length 
27 Calf circumference 
28 Cervicale height 
29 Chest breadth 
30 Chest depth 
31 Crotch height 
32 Eye height (sitting) 
33 Foot breadth 
34 Foot length 
35 Forearm circumference, flexed 
36 Gluteal furrow height 
37 Hand breadth at metacarpale 
38 Head breadth 
39 Head length 
40 Heel breadth 
41 Hip breadth 
42 Interpupillary distance 
43 Knee circumference 
44 Knee height (sitting) 
45 Lateral malleolus height 
46 Neck circumference over larynx 
47 Shoulder-elbow length 
48 Sitting height 
49 Thigh clearance 
50 Waist breadth at omphalion 
51 Waist depth at omphalion 
52 Waist height at omphalion 
53 Wrist to centre-of-grip length 
54 Hip breadth (sitting) 
55 Popliteal height 
56 Radiale-Stylion length 

 

3. Results 

In the regression models gender was treated 
separately and the coefficient of determination and 
the root-mean-square deviation was calculated for 
each dependent variable for each test. However, 
only the combined average results, for both genders 
and the dependent variables for each test, are 
presented in the following text and figures (Table 2, 
Figure 2 and Figure 3). 
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Table 2 Average R2 value and the root-mean-square 
deviation for the dependent variables for each test 

Predictive 
variables 

Regression 
model R2 value RMSD 

Test 1:  
#1,2 

Flat 58.2% 13.88 
Hierarchical 54.9% 14.27 
Conditional 58.2% 13.88 

Test 2:  
#1-7 

Flat 53.9% 15.29 
Hierarchical 59.6% 11.32 
Conditional 66.5% 10.07 

Test 3:  
#1-17 

Flat 42.1% 19.22 
Hierarchical 68.0% 9.60 
Conditional 75.0% 8.02 

Test 4:  
#54-56 

Flat N/A N/A 
Hierarchical N/A N/A 
Conditional 53.1% 16.16 

 
In test 1, when stature and weight was used as 
independent variables the resulting R2 value and 
root-mean-square deviation were approximately the 
same for all three regression models. However 
when the number of independent variables 
increases the accuracy of the flat regression model 
decreases compared to the hierarchical and 
conditional regression models. In test 2, when 7 
measurements were used as independent variables, 
the conditional model had an average R2 value that 
was 23.3% higher than that of the flat model and 
11.6% higher than that of the hierarchical model. 
Analysis of root-mean-square deviation showed a 
decrease for the conditional model by 34.2% 
compared to the flat model and 11.1% compared to 
the hierarchical model. 

 
Figure 2 Graph illustrating the evaluation of the R2 value 
for the dependent variables based on the results from the 
four different tests (Higher value indicates higher 
accuracy) 

In test 3, when 17 measurements were used as 
independent variables, the conditional model had an 
average R2 value that was 78.0% higher than that of 
the flat model and 10.2% higher than that of the 
hierarchical model. Analysis of root-mean-square 
deviation showed a decrease for the conditional 

model by 58.2% compared to the flat model and 
16.4% compared to the hierarchical model. 
 
In test 4, when the last three measurements in Table 
1 were used as independent variables, results could 
only be attained from the conditional regression 
model as it can use any variables as input. 
However, the results from test 4 show a decrease in 
accuracy of predicting dependent variables. 
Compared to test 1, with stature and weight as 
independent variables, test 4 shows a decrease in R2 
value by 8.70% and an increase in root-mean-
square error of 16.4%.  

 
Figure 3 Graph illustrating the evaluation of the root-
mean-square deviation for the dependent variables based 
on the results from the four different tests (Lower value 
indicates higher accuracy) 

In total the conditional regression model shows the 
highest accuracy when predicting unknown 
variables. For the first three tests the conditional 
model had, on average, an accuracy that was 31.7% 
higher than that of the flat model and 9.3% higher 
than that of the hierarchical model (depending on if 
the coefficient of determination or the root-mean-
square deviation was assessed). In test 4 the 
conditional model was the only model that could 
produce any results. 

4. Discussion 

The results from the study shows that using a 
conditional regression model that makes use of all 
known variables to predict the values of unknown 
measurements is advantageous compared to the flat 
and hierarchical regression models. Both the 
hierarchical regression model and the conditional 
linear regression model have the advantage that 
when more measurements are included the models 
will give a better prediction of the unknown 
measurements compared to the flat regression 
model based on two variables, stature and weight. 
A conditional linear regression model has the 
additional advantage that any measurement can be 
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used as independent variable. This gives the 
possibility to only include measurements that have 
a direct connection to the design dimensions being 
sought. For example, in the case of creating 
multidimensional boundary cases it is of interest to 
reduce the number of anthropometric measurements 
that are used as input, i.e. it is advantageous to not 
always be forced to include stature and weight 
(Brolin et al. 2012). In other cases, stature and 
weight might not be of interest to include in the 
analysis, e.g. when designing a shoe, helmet or a 
hand control. However, using a DHM tool to 
evaluate the design of the product could still be of 
interest and thus requiring the functionality of the 
conditional regression model. 
 
Sorting the mean vector and the covariance matrix 
by independent and dependent variables and by 
using matrix algebra as described in section 2.1 
eases the process of defining regression equations 
for the dependent variables. The comparison of the 
different regression models was done using 
ANSUR anthropometric data (Gordon et al. 1989). 
This data is not representative for any civilian 
population today (since it was measured 20 years 
ago on army personnel) but considered relevant 
here in that it covers large data set of both 
measurements and individuals. The presented 
conditional regression model could easily be 
applied to any anthropometric data, which can be 
approximated by a normal distribution and for 
which the mean value and covariance matrix are 
known or can be calculated. Even though the 
described method makes good prediction of 
dependent variables the diversity variance of 
anthropometric data is not considered. A manikin 
based on a number of specific measurements will, 
by using the presented model, always look the 
same. This is not the case in human populations, 
e.g. persons of a specific stature will most likely 
have different weights and proportions. Parkinson 
and Reed (2010) proposes a model for creating 
virtual user populations which also incorporates a 
stochastic component retaining relevant variance of 
the anthropometric data. The presented conditional 
model would be possible to extend to calculate and 
incorporate the variance for each dependent 
variable based on the independent variables. This 
would give digital human models with 
anthropometry that better resembles the variance 
and diversity that exist within human populations. 
This would in turn produce more realistic and 
accurate simulations and evaluations and thus give 
better assistance to engineers and designers using 
DHM tools when developing products and 
workplaces. 
 

5. Conclusion 

Results from the study shows that the conditional 
model produces more accurate predictions 
compared to a flat regression model based on 
stature and weight, and also to a hierarchical 
regression model that uses geometric and statistical 
relationships between body measurements to make 
predictions. Utilising the conditional regression 
model would create digital manikins with enhanced 
accuracy that would produce more realistic and 
accurate simulations and evaluations when using 
DHM tools for the design of products and 
workplaces. 
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